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Abstract

In this paper, we determine the differential spectrum and the Walsh transform
of the Welch permutation g(x) = x2

m+1+1 + x3 + x of F22m+1 , which was derived
from the Welch APN power function x2

m+3. As an application, the properties of
g(x) are used to partly resolve a conjecture by Ding [9] on a class of binary linear
codes constructed from the Welch APN power functions.
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1 Introduction

Let F2n denote the finite field of 2n elements and F∗2n be its multiplicative group. For a
vectorial Boolean function F (x) from F2n to F2n , denote

NF (a, b) = |{x ∈ F2n |F (x+ a) + F (x) = b}|. (1)

The differential uniformity of F (x) is defined by

∆F = max {NF (a, b) | a ∈ F∗2n , b ∈ F2n} .

Nyberg defined a mapping F (x) to be differentially δ-uniform if ∆F = δ [14]. Differential
uniformity is one of the most important notions in symmetric cryptography. It quantifies
the security of S-boxes used in block ciphers with respect to the differential attack. For
practical applications, cryptographic functions are desirable to have low differential uni-
formity. It is clear that the equation F (x+ a) + F (x) = b have solutions in pairs. Thus,
∆F = 2 is the smallest possible value for the differential uniformity of F (x). A function
F (x) is said to be almost perfect nonlinear (APN) if its differential uniformity is 2. E-
quivalently, a function F (x) is APN if its derivative function DaF (x) := F (x+a) +F (x),
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for any a ∈ F∗2n , is a two-to-one function over F2n . APN functions are of great interest due
to their importance in the design of S-boxes in block ciphers and their close connection to
optimal objects in coding theory and combinatorial theory. Constructing APN functions
has been intensively studied in the last three decades, and by far the known families of
APN functions over F2n can be found in the recent paper [6]. Besides the differential
uniformity, the differential spectrum of F (x), namely the value distribution of NF (a, b)
for a ∈ F∗2n and b ∈ F2n , is also an important notion for estimating its resistance against
variants of differential cryptanalysis [1, 2, 5, 8]. In addition to differential properties,
nonlinearity and Walsh transform are important measurements to assess the properties
of a vectorial Boolean function against linear cryptanalysis.

Nonlinear functions also have a number of applications in constructing error-correcting
codes with good properties [7, 9]. An [n, k, d] binary linear code C is a k-dimensional
subspace of Fn2 with minimum (Hamming) distance d. Let Ai denote the number of
codewords with Hamming weight i in a code C of length n. The weight enumerator of C
is defined by 1 +A1z +A2z

2 + · · ·+Anz
n. The sequence (1, A1, A2, . . . , An) is called the

weight distribution of C. Clearly, the weight distribution gives the minimum distance of
the code, and thus the error correcting capability. In addition, the weight distribution of
a code allows the computation of the error probability of error detection and correction
with respect to some error detection and error correction algorithms. A binary code C is
said to be a t-weight code if the number of nonzero Ai in the sequence (A1, A2, . . . , An) is
equal to t. Binary linear codes with few weights have many applications [7, 9], including
secret sharing schemes, authentication codes, association schemes and strongly regular
graphs.

Ding et. al in [10, 9] introduced a generic construction of binary linear codes from a
subset D = {d1, d2, . . . , d`} of F2n and the absolute trace function Trn1 (·) from F2n to F2

as
CD = {ca = (Trn1 (ad1),Trn1 (ad2), . . . ,Trn1 (ad`)) : a ∈ F2n} . (2)

This construction is generic in the sense that many classes of known codes could be
produced by selecting proper defining sets D. When the defining set D is properly chosen,
the code CD can have a few nonzero weights. In [9] Ding investigated the properties of
binary linear codes from the images of certain functions on F2n and proposed several
conjectures on properties of the constructed codes, including the following one from the
Welch APN power functions.

Conjecture 1. [9, Conjecture 33] Let n = 2m+ 1, F (x) = x2
m+3, f(x) = F (x) + F (x+

1) + 1 and D(f) = {d1, d2, . . . , d`} = {f(x) |x ∈ F2n}. Define the binary code CD(f) as

CD(f) = {ca = (Trn1 (ad1),Trn1 (ad2), . . . ,Trn1 (ad`)) : a ∈ F2n} .

If n ∈ {5, 7}, then CD(f) is a three-weight code with length 2n−1 and dimension n. If
n ≥ 9, then CD(f) is a five-weight code with length 2n−1 and dimension n.

In this paper, we investigate certain cryptographic properties, namely, the differential
spectrum and the Walsh spectrum, of the permutation polynomial g(x) = x2

m+1+1+x3+x
over F22m+1 for a positive integer m ≥ 2. Here we call g(x) the Welch permutation
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polynomial since via it Dobbertion proved that the Welch power function F (x) = x2
m+3

is APN [11]. Furthermore, based on an observation, the weight of a codeword in CD(f)

defined in Conjecture 1 can be expressed in terms of the Walsh transform of g(x) at
certain points. This enables us to show that the binary linear code CD(f) has dimension
n and at most five nonzero weights as described in Conjecture 1.

The remainder of this paper is organized as follows. Section 2 introduces basic notation
and definitions. Section 3 studies the differential spectrum and Walsh transform of g(x).
Section 4 provides a positive answer to Conjecture 1.

2 Preliminaries

2.1 Cryptographic properties of vectorial Boolean functions

Definition 1. Let F (x) be a function from F2n to itself, and NF (a, b) be defined as in
(1). Denote

ωi = | {(a, b) ∈ F∗2n × F2n | NF (a, b) = i} |.
The differential spectrum of F (x) is defined as the multi-set

ΩF = {ω0, ω1, . . . , ωδ} , (3)

where δ is the differential uniformity of F (x).

It is easily seen that ωi = 0 in the differential spectrum if i is odd. Moreover, we have
the following identities

δ∑
i=0

ωi = 2n(2n − 1) and
δ∑
i=0

(i× ωi) = 2n(2n − 1). (4)

For any APN function over F2n , there are only two possible values 0 and 2 in its differential
spectrum. Thus, from the equalities in (4), the differential spectrum of an APN function
over F2n can be uniquely determined.

Another important criterion of a vectorial Boolean function F (x) is its nonlinearity,
which can be given in terms of the Walsh transforms of F (x).

Definition 2. Let F (x) be a function from F2n to itself. The Walsh transform of F (x)
at (a, b) is defined by

WF (a, b) =
∑
x∈F2n

(−1)Tr
n
1 (aF (x)+bx) (5)

for each a, b ∈ F2n . The Walsh spectrum of F (x) is the multi-set

ΛF = {WF (a, b) : a, b ∈ F2n , a 6= 0} . (6)

The nonlinearity of F (x) is given by

NL(F ) = 2n−1 − 1

2
max{| WF (a, b) |: a, b ∈ F2n , a 6= 0}.
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Given a quadratic Boolean function Q(x) from F2n to F2, the function Q(x + z) +
Q(x) +Q(z) is a bilinear function in x and z. Define

VQ = {x ∈ F2n | Q(x+ z) +Q(x) +Q(z) = 0,∀ z ∈ F2n}. (7)

The rank of Q(x) is defined by Rank(Q) = n− dimF2 (VQ) . Note that(∑
x∈F2n

(−1)Q(x)

)2

=
∑
x∈F2n

(−1)Q(x)
∑
z∈F2n

(−1)Q(x+z)+Q(x)+Q(z) = 2n
∑
x∈VQ

(−1)Q(x), (8)

where VQ is the F2-linear space defined as in (7). It is readily seen that Q(x) is linear
over VQ. Hence one has

∑
x∈F2n

(−1)Q(x) =

{
±2n−Rank(Q)/2, if Q(x) = 0 for any x ∈ VQ,
0, otherwise.

This implies that the Rank(Q) is always an even number 2h with 2 ≤ 2h ≤ n [13].

For a quadratic Boolean function Q(x) from F2n to F2, the definition of its Walsh
transform is modified slightly as

Q̂(λ) =
∑
x∈F2n

(−1)Q(x)+Trn1 (λx).

Moreover, when λ runs through F2n , the distribution of Q̂(λ) can be characterized below.

Lemma 1. [13, Theorem 6.2] Let Q(x) be a quadratic form on F2n to F2 with rank 2h.

Then its Walsh transform Q̂(λ) has the following distribution

Q̂(λ) =
∑
x∈F2n

(−1)Q(x)+Trn1 (λx) =

±2n−h, 22h−1 ± 2h−1 times,

0, 2n − 22h times.

For cryptographic applications, a vectorial Boolean function is desired to have low
differential uniformity and high nonlinearity [6].

2.2 The binary code from the Welch power function

Let n = 2m + 1 for a positive integer m and F (x) = x2
m+3. In Conjecture 1, the image

of f(x) = F (x + 1) + F (x) + 1 = D1F (x) + 1 on F2n , denoted by D(f), is chosen as the
defining set. Note that f(x) is a two-to-one function on F2n . Thus, the set D(f) has size
2n−1. Using the generic construction method in (2), the linear code CD(f) in Conjecture 1
is obtained.
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Let ca be a codeword in CD(f). Then, its weight is given by

wt(ca) =
∣∣{1 ≤ i ≤ 2n−1 : Trn1 (adi) = 1}

∣∣
=

1

2

2n−1 −
∑

d∈D(f)

(−1)Tr
n
1 (ad)


=

1

2

(
2n−1 − 1

2

∑
x∈F2n

(−1)Tr
n
1 (af(x))

)

= 2n−2 − 1

4

∑
x∈F2n

(−1)Tr
n
1 (af(x)).

(9)

The above formula shows that for studying the Hamming weight properties of the code
CD(f), it is critical to investigate the Walsh transform of f(x) at (a, 0), i.e., Wf (a, 0).

3 The differential spectrum and the Walsh spectrum of the
Welch permutation

For the permutation g(x) = x2
m+1+1 + x3 + x over F2n with n = 2m + 1, this section

will determine the differential spectrum Ωg defined as in (3) and the Walsh spectrum Λg

defined as in (6).

Theorem 2. Let n = 2m + 1 and g(x) = x2
m+1+1 + x3 + x. Then g(x) is differentially

4-uniform. Furthermore, its differential spectrum is given by

{ω0 = 22n−1 + 22n−3 − 3 · 2n−2, ω2 = 22n−2, ω4 = 22n−3 − 2n−2}.

Proof. Let a, b ∈ F2n , a 6= 0, and N(a, b) be the number of solutions of g(x+a)+g(x) = b
in F2n . Note that

g(x+ a) + g(x) + b

= x2
m+1

a+ xa2
m+1

+ a2
m+1+1 + x2a+ xa2 + a3 + a+ b

= ax2
m+1

+ ax2 + (a2
m+1

+ a2)x+ g(a) + b.

Since a 6= 0, g(x+ a) + g(x) + b = 0 is equivalent to that

x2
m+1

+ x2 + cx+ d = 0, (10)

where

c = a2
m+1−1 + a and d =

g(a) + b

a
. (11)

Note that c = 0 if and only if a = 1. Next we consider the following linearized polynomial

x2
m+1

+ x2 + cx = 0. (12)
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If c = 0 (i.e., a = 1), then (12) have two solutions in F2n , which are 0 and 1. If c 6= 0 (i.e.,
a /∈ F2), then by raising (12) to the power 2m, we get

x+ x2
m+1

+ c2
m

x2
m

= 0. (13)

Adding up (12) and (13), we get

c2
m

x2
m

+ x2 + (c+ 1)x = 0,

which implies

x2
m

=
x2

c2m
+
c+ 1

c2m
x. (14)

Substituting (14) into (13), we get

x4 + (c2
m+1

+ c2 + 1)x2 + c2
m+1+1x = 0. (15)

The above argument shows that if x is a solution of (12), it must be a solution of (15).
Note that (15) is a linearized polynomial over F2n and the number of its solutions in F2n

is 1, 2 or 4. Thus, we can conclude that the number of solutions of (12) in F2n is also 1,
2 or 4. Moreover, note that

c = a2
m+1−1 + a =

a2
m+1

+ a2

a
.

Thus, for any given a ∈ F2n \ F2, x = a must be a solution of (12). Thus, when c 6= 0,
i.e., a /∈ F2, the number of solutions of (12) in F2n is 2 or 4.

Denote by M1 (resp. M2) the number of a ∈ F2n \ F2 such that (12) has two (resp.
four) solutions in F2n . In what follows, we need to determine M1 and M2. We further
investigate the linearized polynomial (15). Since x = 0 and x = a are its solutions, the
polynomial on the left hand side of (15) has a factorization over F2n as follows

x4 + (c2
m+1

+ c2 + 1)x2 + c2
m+1+1x = x(x+ a)(x2 + ax+

c2
m+1+1

a
),

where c = a2
m+1

+a2

a
. (One can verify that a2 + c2

m+1+1

a
= c2

m+1
+ c2 + 1.) To check the

exact number of solutions of (12), we should investigate the solutions of the following
quadratic equation

x2 + ax+
c2

m+1+1

a
= 0. (16)

Note that
Trn1

(
c2

m+1+1

a3

)
= Trn1

(
a2+a2

m+2

a2m+1 · a2
m+1

+a2

a4

)
= Trn1

(
a4+a2·a2m+1

+a2
m+2 ·a2m+1

+a2·a2m+2

a2m+1 ·a4

)
= Trn1

(
1

a2m+1 + 1
a2

+ a2
m+2

a4
+ a2

m+1

a2

)
= Trn1

(
1
a

)
+ Trn1

(
1
a

)
+ Trn1

(
a2

m+1

a2

)
+ Trn1

(
a2

m+1

a2

)
= 0.
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Thus, (16) has two solutions in F2n . This also shows that for any a ∈ F2n \F2, (15) always
has four solutions in F2n . By Theorem 1 in [12], one can get the solutions of (16), which
are

x1 = a
m∑
i=1

(
c2

m+1+1

a3

)22i−1

, and x2 = x1 + a.

Next the main task is to verify that whether x1 is a solution of (12) or not.
Let y = x1

a
, then by (16) we have

y2 + y +
c2

m+1+1

a3
= 0. (17)

If x1 is a solution of (12), we also have

y2
m+1

+
a2

a2m+1 y
2 +

ca

a2m+1 y = 0. (18)

Combining (17) and (18), we have

y2
m+1

+ y +
( c
a

)2m+1+1

= 0. (19)

On the other hand, by (17) we have

y2
m+1

+ y

=
m∑
i=0

(y2 + y)
2i

=
m∑
i=0

(
c2

m+1+1

a3

)2i
=

m∑
i=0

(
1

a2m+1 + 1
a2

+ a2
m+2

a4
+ a2

m+1

a2

)2i
=

m∑
i=0

((
1
a2

)2m
+ 1

a2
+
(
a2

m+1

a2

)2
+ a2

m+1

a2

)2i

= Trn1
(

1
a2

)
+ 1

a2m+1 + a2
m+1

a2
+
(
a2

m+1

a2

)2m+1

= Trn1
(

1
a2

)
+ 1

a2m+1 + a2
m+1

a2
+ a2

a2m+2

= Trn1
(

1
a2

)
+ 1 +

(
a2

m+1
+a2

a2

)2m+1

· a2
m+1

+a2

a2

= Trn1
(

1
a2

)
+ 1 +

(
c
a

)2m+1+1
.

(20)

By (20) and (19), we can conclude that for each a ∈ F2n \ F2, the solution x1 of (16) is
also a solution of (12) if and only if Trn1

(
1
a

)
= 1. This means that for each a ∈ F2n \ F2,

(12) has two (resp. four) solutions in F2n if and only if Trn1
(
1
a

)
= 0 (resp. Trn1

(
1
a

)
= 1).

It is obvious that the number of a ∈ F2n \ F2 such that Trn1
(
1
a

)
= 0 (resp. Trn1

(
1
a

)
= 1)

is equal to 2n−1 − 1. Thus, we obtain that M1 = M2 = 2n−1 − 1.

For each given a ∈ F∗2n , let La(x) = x2
m+1

+x2+cx, and recall that c = a2
m+1

+a2

a
. Then,

La(x) is a linear transformation from F2n into itself. Let Ai = {a ∈ F2n \F2 | Trn1 ( 1
a
) = i},
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where i = 0, 1. Note that F∗2n = {1} ∪ A0 ∪ A1. The above arguments have shown that
La(x) = 0 has two solutions in F2n if a ∈ {1}∪A0 and has four solutions in F2n if a ∈ A1.
Moreover, when (12) has two (resp. four) solutions in F2n , i.e., the kernel of La(x) has
cardinality two (resp. four), then by the homomorphism theorem the image of La(x) has
cardinality 2n−1 (resp. 2n−2), and for each element d in the image, there exist exactly two
(resp. four) elements x’s in F2n such that La(x) = d.

For each a ∈ F∗2n , let Ba denote the image of the linear transformation La(x) =
x2

m+1
+ x2 + cx. We have obtained that |Ba| = 2n−1 if a ∈ {1} ∪ A0 and |Ba| = 2n−2

if a ∈ A1. By (11), for a given element a ∈ F∗2n , the correspondence between d and b is
one-to-one. Thus, we can conclude that for each a ∈ {1}∪A0 (resp. a ∈ A1 ), N(a, b) = 2
(resp. 4) if and only if b ∈ aBa + g(a) = {ad+ g(a) | d ∈ Ba}, where N(a, b) denotes the
number of solutions of (10) in F2n . In other cases, we all have N(a, b) = 0. Thus, the
number of pairs (a, b) ∈ F∗2n × F2n such that N(a, b) = 2 (resp. 4) is equal to 2n−1 · 2n−1
(resp. (2n−1 − 1) · 2n−2). This together with (4) gives the differential spectrum.

Note that Trn1 (ag(x)) = Trn1 (a(x2
m+1+1 +x3 +x)) is a quadratic Boolean function from

F2n to F2. According to Lemma 1, the Walsh transform of Trn1 (ag(x)) heavily depends on
its rank. Below is an auxiliary result for the rank of Trn1 (ag(x)).

Lemma 3. Let s, n, k be positive integers satisfying gcd(s, n) = 1, and without loss of
generality we also assume that k ≤ n/2. Let

Q(x) =
k∑
i=1

Trn1 (cix
2si+1),

where ci ∈ F2n and at least one ci is nonzero for 1 ≤ i ≤ k. Then, the rank 2h of Q(x) is
in the range n− 2k ≤ 2h ≤ n.

Proof. We consider the following equation

Q(x) +Q(z) +Q(x+ z)

= Trn1

(
k∑
i=1

(
cix

2siz + cixz
2si
))

= Trn1

(
k∑
i=1

(
cix

2siz + c2
−is

i x2
−is
z
))

= Trn1

(
z

k∑
i=1

(
cix

2si + c2
−is

i x2
−is
))

= 0

for all z ∈ F2n . The above equation holds if and only if

k∑
i=1

(
cix

2si + c2
−is

i x2
−is
)

= 0,

which is equivalent to

k∑
i=1

(
cix

2si + c2
−is

i x2
−is
)2ks

=
k∑
i=1

(
c2

ks

i x2
s(k+i)

+ c2
s(k−i)

i x2
s(k−i)

)
= 0. (21)
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Table 1: The Walsh spectrum of x2
m+1+1 + x3 + x

Value Frequency

0 9 · 22n−4 + 3 · 2n−3 − 1

±2m+1 (5·2n−1−2)
3

(
2n−2 ± 2

n−3
2

)
±2m+2 (2n−1−1)

3

(
2n−4 ± 2

n−5
2

)
We can rewrite (21) in the following form

2k∑
i=0

aix
2si = 0, (22)

where ai = c2
si

k−i for i = 0, 1, . . . , k − 1, ak = 0 and ai = c2
ks

i−k for i = k + 1, k + 2, . . . , 2k.
Since gcd(s, n) = 1, according to [4, Corollary 1], the equation (22) has at most 22k

solutions in F2n . The desired result then follows.

With Theorem 3 and Lemma 3, we are ready to prove the following theorem.

Theorem 4. Let n = 2m+ 1 and g(x) = x2
m+1+1 + x3 + x. Then the Walsh spectrum of

g(x) is given in Table 1.

Proof. It is easily seen that

Wg(0, b) =
∑
x∈F2n

(−1)Tr
n
1 (bx) =

2n, if b = 0,

0, if b 6= 0.

When a 6= 0, Wg(a, b) =
∑

x∈F2n

(−1)
Trn1

(
ax2

m+1+1+ax3+(a+b)x
)
, and Trn1 (ax2

m+1+1 + ax3), de-

noted by Qa(x), is a quadratic form on F2n . Note that

Qa(x) = Trn1 (ax2
m+1+1 + ax3) = Trn1 (a2

m

x2
m+1 + a2

2m

x2
2m+1).

Then, by Lemma 3, the rank of Qa(x) is n− 3 or n− 1 since n is odd and gcd(m,n) = 1.
When a runs through F∗2n , assume that the number of a ∈ F∗2n such that Qa(x) has rank
n− (2i− 1) is Ni, i = 1, 2. Then, by Lemma 1, when (a, b) runs through F2n × F2n , the
Walsh transform Wg(a, b) of g(x) has the following distribution

Wg(a, b) =


0, (2n − 1) +N1(2

n − 2n−1) +N2(2
n − 2n−3) times,

±2m+1, N1(2
n−2 ± 2

n−3
2 ) times,

±2m+2, N2(2
n−4 ± 2

n−5
2 ) times.
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Next we calculate the fourth power sum of Wg(a, b). On one hand, we have∑
a,b∈F2n

(Wg(a, b))
4 = 24n + 24m+4 · 2n−1 ·N1 + 24m+8 · 2n−3 ·N2. (23)

On the other hand, we have∑
a,b∈F2n

(Wg(a, b))
4

=
∑

x,y,u,v∈F2n

∑
b∈F2n

(−1)Tr
n
1 (b(x+y+u+v))

∑
a∈F2n

(−1)Tr
n
1 (a(g(x)+g(y)+g(u)+g(v)))

= 22nT,

(24)

where T denotes the number of (x, y, u, v) ∈ (F2n)4 satisfyingx+ y + u+ v = 0,

g(x) + g(y) + g(u) + g(v) = 0.

Let N(a, b) be the number of solutions of g(x + a) + g(x) = b in F2n . Then, we have
T =

∑
a,b∈F2n

N(a, b)2. Using the notation and results in Theorem 2 and its proof, we have

T =
∑

a,b∈F2n

N(a, b)2 = 22n + 4ω2 + 16ω4 = 4 ·
(
22n − 2n

)
. (25)

Combining (23), (24), (25) and the fact that N1 +N2 = 2n−1, we obtain the distribution
of the Walsh transform of g(x) as in Table 1.

4 Binary codes from the Welch APN power function

For the Welch APN power function F (x) = x2
m+3 and f(x) = F (x+ 1) + F (x) + 1, it is

easy to verify that

f(x) = F (x+ 1) + F (x) + 1 = (x+ x2
m

)(x2 + x+ 1) = g(x+ x2
m

),

where g(x) is the Welch permutation discussed in Section 3. With the properties of g(x)
presented in Section 3, we obtain the following result on the code CD(f) constructed in
Conjecture 1.

Theorem 5. Let n = 2m + 1 with a positive integer m ≥ 2. The binary linear code
CD(f) defined in Conjecture 1 has length 2n−1, dimension n and its nonzero weights are
contained in the following set:{

2n−2, 2n−2 ± 2
n−3
2 , 2n−2 ± 2

n−1
2

}
.
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Table 2: Some numerical results

Value of n Weight enumerator of CD(f)

5 1 + 6x10 + 16x8 + 10x6

7 1 + 64x32 + 36x28 + 28x36

9 1 + x144 + 108x120 + 286x128 + 108x136 + 9x112

11 1 + 440x496 + 408x528 + 22x480 + 1156x512 + 22x544

Proof. It is clear that the length of CD(f) is 2n−1. As for the dimension, since CD(f) is
linear, we need to consider the number of a ∈ F2n such that Trn1 (af(x)) = 0 for any
x ∈ F2n , equivalently,

∑
x∈F2n

(−1)Tr
n
1 (af(x)) = 2n.

Define T0 = {x + x2
m |x ∈ F2n} and T1 = {x + 1 |x ∈ T0}. Note that x + x2

m
is a

two-to-one function over F2n . Thus T0 ∪ T1 = F2n . Since n is odd, we have Trn1 (1) = 1
and Trn1 (x) = 1 for any x ∈ T1. Since g(x) is a permutation of F2n , one has∑

z∈T0

(−1)Tr
n
1 (bg(z)) +

∑
z∈T1

(−1)Tr
n
1 (bg(z)) =

∑
z∈F2n

(−1)Tr
n
1 (bg(z)) = 0.

Then for any a ∈ F∗2n ,∑
x∈F2n

(−1)Tr
n
1 (af(x)) = 2

∑
z∈T0

(−1)Tr
n
1 (ag(z))

=
∑
z∈T0

(−1)Tr
n
1 (ag(z)) +

∑
z∈T0

(−1)Tr
n
1 (ag(z+1)+1)

=
∑
z∈T0

(−1)Tr
n
1 (ag(z)+z) +

∑
z∈T0

(−1)Tr
n
1 (ag(z+1)+z+1)

=
∑
z∈T0

(−1)Tr
n
1 (ag(z)+z) +

∑
z∈T1

(−1)Tr
n
1 (ag(z)+z)

=
∑
x∈F2n

(−1)Tr
n
1 (ag(x)+x).

(26)

By the Walsh spectrum of g(x) in Theorem 4, it is clear that Wf (a, 0) = Wg(a, 1) 6= 2n

for any nonzero a ∈ F2n . This implies that CD(f) has dimension n. Furthermore, it follows
from (9) that

wt(ca) = 2n−2 − 1

4

∑
x∈F2n

(−1)Tr
n
1 (ag(x)+x). (27)

From the Walsh spectrum of g(x) in Table 1, the possible nonzero weights of the code
CD(f) can be directly determined.

With the help of Magma, we obtain some numerical results list in Table 2 , which are
in accordance with Theorem 5.
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